Meeting of the heads of the Labs
19./20. September, Zadar (Croatia)

Effects of storage in field and in laboratory and influence of temperature and light on the chemistry of forest water samples

1 IVL Swedish Environmental Research Institute, Sweden (Experiment D)
2 Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark (Experiment D)
3 WSL, Swiss Federal Institute for Forest, Snow and Landscape Research, Switzerland (Experiments I,J,K,L,M,N,O)
4 Northwest German Forest Research Station, Germany (Experiments E,F)
5 CNR-ISE, Institute of Ecosystem Study, Italy (Experiment G)
6 Forest & Nature Lab, Ghent University, Belgium (Experiment C)
7 Research Institute for Nature and Forest, Belgium (Experiments A,B)
8 Slovenian Forestry Institute, Slovenia (Experiment H)
The chemical composition of water samples can vary over time due to

- biological activity in the sample,
- exchanges and adsorption on the walls of the storage vessel,
- abiotic particle formation,
- dissolution.

Factors influencing these processes include

- the initial composition of the sample, e.g. pH, temperature and light conditions, which directly determine the activity of microorganisms such as nitrifiers,
- storage duration (in the field or the laboratory),
- cleaning of the storage vessels,
- pre-treatment of the samples before analysis (e.g. filtering, acidification).
Types of experiments:

Fourteen different storage experiments:

1. **Storage in the field - influence of the sampler design:**
 Experiment A, D, I - sample bottle hanging in a tube (A) versus sample bottle in a soil pit (B).

2. **Storage in the laboratory simulating field conditions:**
 Experiment E, G, H - storage of unfiltered bulk open field (BOF), throughfall (TF), stemflow (SF) and soil solution (SS) samples 1 to 86 days at different temperatures (4, 8, 20, 30, 40 °C). Samples collected after 1 day, 1 or 2 weeks.

3. **Long-term storage in the laboratory:**
 Experiment B, E, J, K, L, M, N, O - storage of filtered bulk BOF, TF, SF and SS samples at 2-4 or -20 °C. 1 day to 1 year, acidified and not acidified.
1. Storage in the field - influence of the sampler design
Effects of storage in field and in laboratory and influence of temperature and light on the chemistry of forest water samples

2. Storage in the laboratory simulating field conditions:

storage in bottles, filtrated and unfiltrated

different temperatures: 8 °C, 20° C, 30 °C, 40 °C
3. Long-term storage in the laboratory:

storage in bottles, filtrated

different temperatures: 2-4 °C, -20°
Effects of storage in field and in laboratory and influence of temperature and light on the chemistry of forest water samples

influencing variables:
- sample type (bulk precipitation, throughfall, stemflow, soil water)
- light
- temperature (-20 °C, 2-4 °C, 8°C, 20°C, 30°C, 40°C)
- filtration (without, with paper filters, with membrane filters)
- sample pretreatment (acidification)
- storage time (0, 2, 5 days; 1, 2, 4 weeks; 1, 2, 3, 4, 6 month; 1, 2 years)

measured compounds:
- anions, cations, pH, conductivity, alkalinity, N tot, DOC
Results (1):

1. Storage in the field - influence of the sampler design:

Experiment A, D, I:
(A): large daily variations in temperature, high temperature peaks (up to 45 °C), higher mean temperature;
(B): better protected from light, lower variations in temperature, lower mean temperature (max. 20 °C)

Experiment I:
lower pH in (B), higher conductivity and higher DOC in (B). No signifikant pattern for Ntot
Effects of storage in field and in laboratory and influence of temperature and light on the chemistry of forest water samples

Results (2):

1. Storage in the field - influence of the sampler design

light, temperature
Effects of storage in field and in laboratory and influence of temperature and light on the chemistry of forest water samples

Results (3): Example from Experiment A

Temperature (°C)

- bottle in pit below soil surface
- bottle above ground level

Time (5 minutes interval)
Results (4):

2. Storage in the laboratory simulating field conditions:

Experiment E (fresh collected samples, 1 day after rainfall):
evident changes in DOC, pH and \(\text{NH}_4^+ \) and \(\text{N}_{\text{tot}} \); the changes were often higher and faster at higher temperatures and in unfiltered samples; DOC decreased and pH increased

Experiment G (samples collected after 1 week):
evident changes in DOC, pH and N compounds; but not clear how it is related to temperature

Experiment H (samples collected after 2 weeks; 15 days storage of TF at room temperature, sunny and hot places):
high evaporation at the warm places after 15 days; no changes for pH, N compounds, small changes for \(\text{Na}^+ \) and \(\text{Ca}^{2+} \)
Effects of storage in field and in laboratory and influence of temperature and light on the chemistry of forest water samples

Results (5):

Example from Experiment E
Results (6):

Example from Experiment E

Effects of storage in field and in laboratory and influence of temperature and light on the chemistry of forest water samples

N-Compounds in Throughfall at different Temperatures, filtered and unfiltered (pH5.6)
Results (7):

Example from Experiment G

NH$_4^+$ (mg-N L$^{-1}$)

Measurement after storage vs. measurement immediate
Results (8):

3. Long-term storage in the laboratory:

Experiment B:
no systematical changes of NO_3^-, NH_4^+, SO_4^{2-}, Cl^-, cations after storage at -20 °C for up to 1 year

Experiment J:
no changes for N compounds but decrease in DOC in SS at 2-4 °C and -20°C after 4 months; no or little difference when stored at 2-4 °C or -20 °C

Experiment L:
no changes for pH and conductivity during 1 month, no changes of DOC during 2 months, no changes of cations (acidified) during 4 months; slightly decrease of NO_3^- during 4 months at 2-4 °C
Results (9):

Experiment M:
no changes in DOC after 2 weeks at 2°C and additional 3 months at -20°C; decrease in conductivity in samples with pH > 8; after 3 weeks at -20 °C

Experiment O:
no alteration of the samples in systematic way during long time storage at -20 °C

Experiment E:
no changes of pH < 4,9; increase at higher pH; decrease of DOC; changes for NH₄⁺, no changes for NO₃⁻ at 2-4 °C

Experiment K (storage at 2 °C):
no large differences for elements measured by ICP-OES between acidified and not-acidified storage
Results (10):

Example from Experiment N

Relative difference for storage acidified vs. not acidfied [%] in absolute values

- Al
- Ca
- Mg
- Mn
- Na
- Si
Effects of storage in field and in laboratory and influence of temperature and light on the chemistry of forest water samples

<table>
<thead>
<tr>
<th>plot</th>
<th>sample typ</th>
<th>tree species</th>
<th>pH</th>
<th>TC</th>
<th>pH</th>
<th>TC</th>
<th>NH4</th>
<th>NO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lüss</td>
<td>Stemflow</td>
<td>oak</td>
<td>3,8</td>
<td>350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lüss</td>
<td>soil water</td>
<td>LY</td>
<td>4</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solling</td>
<td>throughfall</td>
<td>KR</td>
<td>4</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solling</td>
<td>Stemflow</td>
<td>ST</td>
<td>4,3</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solling</td>
<td>soil water</td>
<td>LY</td>
<td>4,5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Göttinger Wald</td>
<td>Stemflow</td>
<td>ST</td>
<td>4,9</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solling</td>
<td>throughfall</td>
<td>KR</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harste</td>
<td>Stemflow</td>
<td>ST</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harste</td>
<td>throughfall</td>
<td>KR</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lüss</td>
<td>Stemflow</td>
<td>ST</td>
<td>5,2</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Göttinger Wald</td>
<td>throughfall</td>
<td>KR</td>
<td>5,4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lüss</td>
<td>throughfall</td>
<td>KR</td>
<td>6</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Göttinger Wald</td>
<td>soil water</td>
<td>LY</td>
<td>8</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example from Experiment E

4 °C / filtr. / 85 days
Conclusions:

- during the sampling period outside on the plot (2 weeks) the conditions are continuously changing; high temperature peaks up to 45 °C are possible
- high temperature can promote changes in the (unfiltered) samples
- mostly changing parameters are DOC, pH, NH4+, Ntot
- the changes in unfiltered samples normally were higher than in filtered samples, but in filtered samples changes were also observed
- in most cases the changes were higher at higher temperatures
Conclusions (2):

- in filtered samples stored at 2-4 °C or at -20 °C only the TC /DOC content sometimes decreased; the other parameters normally didn´t change

- the storage experiments with unfiltered samples stored up to 2 weeks at different temperatures show different changes for pH, DOC, NH4+ and Ntot. Many changes can happen in the field before sample collection for these parameters

- Overall, shorter sampling periods (weekly), early filtration and storage of the samples at 2-4 or -20 °C is the best way to minimize changes. Changes can not be avoided totally.