Total major and trace elements in soil obtained with an automated digestion system

Meetings of the Heads of the Laboratories – ICP Forests

Annie Guerin, P. Deboffles, E. Dubromel, D. Ducristel, G. de Jaeger, L. Andrzejewski and N. Proix
PLATINAAE
Laboratoire d’Analyses des Sols INRA ARRAS FRANCE
Total digestion of soils in LAS-INRA

- NF X 31-147 (French standard)

- Method:
 - 5ml HF + 1.5ml HClO₄
 - Hot block (120 °C and 160 °C, ≈7 hours)
 - Final medium: diluted HNO₃
 - 0.25 g of ashed soil / final vol: 50 ml

- Manual addition of very dangerous acids

- Time-consuming
VULCAN (Questron Technologies Corp)

Safety: only put bottles of acids in a box

Availability of technicians
Automated method of digestion

- **Steps of the program:**
 - Addition of HF and HClO₄
 - Acid evaporation
 - Vol adjusted to 50 ml with HNO₃
 - Transferring into a tube

- **Problems:**
 - Max volume transferable is 35 ml (not enough for the analysis of all the elements)
 - Blanks too high (> quantification limits)

- **New program:**
 - End = addition of diluted HNO₃ with a final vol of 30 ml
 - Steps of stirring, transferring and adjusting the vol to 50 ml are done manually
Question:

LAS is accredited for total analysis of soil
Analysis of monitoring experiments
Total digestion of soils

- **Soil samples:**
 Soils from the International Soil-Analytical Exchange (ISE, Wageningen evaluating programs for analytical laboratories)

- **Experiments:**
 - Automated digestion of 56 soils, 1 replicat / soil
 - Automated digestion of 8 soils, 2 replicats / soil, repeated 5 times
 - comparison of results: automated method versus manual method (data from 2014 to 2017)
 - calculation of z-scores
 - accuracy profils (NF V 03-110)
 - estimation of uncertainties
Analytical methods

ICP-MS
As - Cd, Mo, Pb, Tl

ICP-AES (axial)
Co, Cr, Cu, Ni, Pb, Zn - S

ICP-AES (radial)
Al, Ca, Fe, K, Mg, Mn, Na, P
Results: exemples of Fe and As

$y = 0.9985x$
$R^2 = 0.9965$

$y = 0.9917x$
$R^2 = 0.9974$

⇒ « Automated » and « manual » results seem to be not significantly different.
Results: exemples of K and Cr

⇒ Open digestion systems (manual and automated) induce variable losses of Cr

⇒ Analytical problem suspected
Results: number of z-scores ≥ 3

⇒ K: analytical results must be checked
⇒ Soil 856: 5 outliers (Ca, Cd, K, P, Zn) → problem of digestion
⇒ Cr: only 1 outlier, despite variability (large standard deviation of ISE)
Results: Accuracy profil and uncertainty

Accuracy profil of Fe

⇒ Expanded uncertainty (k=2) : 5%
Conclusion

First results:
- Concentrations obtained with automated digestion are globally in accordance with previous results (manual digestion method)
- Conform results for Fe
- Some problems:
 - K : truness
 - Cr : precision

Next steps:
- Finish exploitation of the results
- Check K results
- Present results and conclusions to the COFRAC (French comitee of accreditation)
Thank you for your attention
LOQ Total HF digestion of soil

<table>
<thead>
<tr>
<th>Element</th>
<th>Method</th>
<th>LOQ (g/100g)</th>
<th>Unity</th>
<th>LOQ (mg/l)</th>
<th>Unity</th>
<th>Method</th>
<th>LOQ (mg/kg)</th>
<th>Unity</th>
<th>LOQ (mg/l)</th>
<th>Unity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>ICP-AES (rad)</td>
<td>0,02</td>
<td>g/100g</td>
<td>1,0</td>
<td>mg/l</td>
<td>Ni</td>
<td>ICP-AES (ax)</td>
<td>1</td>
<td>mg/kg</td>
<td>5,0</td>
</tr>
<tr>
<td>Ca</td>
<td>ICP-AES (rad)</td>
<td>0,02</td>
<td>g/100g</td>
<td>1,0</td>
<td>mg/l</td>
<td>Pb</td>
<td>ICP-AES (ax)</td>
<td>2</td>
<td>mg/kg</td>
<td>10</td>
</tr>
<tr>
<td>Fe</td>
<td>ICP-AES (rad)</td>
<td>0,02</td>
<td>g/100g</td>
<td>1,0</td>
<td>mg/l</td>
<td>Zn</td>
<td>ICP-AES (ax)</td>
<td>5</td>
<td>mg/kg</td>
<td>25</td>
</tr>
<tr>
<td>K</td>
<td>ICP-AES (rad)</td>
<td>0,02</td>
<td>g/100g</td>
<td>1,0</td>
<td>mg/l</td>
<td>Co</td>
<td>ICP-AES (ax)</td>
<td>1</td>
<td>mg/kg</td>
<td>5,0</td>
</tr>
<tr>
<td>Mg</td>
<td>ICP-AES (rad)</td>
<td>0,02</td>
<td>g/100g</td>
<td>1,0</td>
<td>mg/l</td>
<td>V</td>
<td>ICP-AES (ax)</td>
<td>0,5</td>
<td>mg/kg</td>
<td>2,5</td>
</tr>
<tr>
<td>Mn</td>
<td>ICP-AES (rad)</td>
<td>10</td>
<td>mg/kg</td>
<td>0,05</td>
<td>mg/l</td>
<td>S</td>
<td>ICP-AES (ax)</td>
<td>4</td>
<td>mg/kg</td>
<td>20</td>
</tr>
<tr>
<td>Na</td>
<td>ICP-AES (rad)</td>
<td>0,02</td>
<td>g/100g</td>
<td>1,0</td>
<td>mg/l</td>
<td>Mo</td>
<td>ICP-MS</td>
<td>0,04</td>
<td>mg/kg</td>
<td>0,2</td>
</tr>
<tr>
<td>P2O5</td>
<td>ICP-AES (rad)</td>
<td>0,001</td>
<td>g/100g</td>
<td>0,05</td>
<td>mg/l</td>
<td>Cd</td>
<td>ICP-MS</td>
<td>0,02</td>
<td>mg/kg</td>
<td>0,1</td>
</tr>
<tr>
<td>Cd</td>
<td>ICP-AES (ax)</td>
<td>0,5</td>
<td>mg/kg</td>
<td>2,5</td>
<td>µg/l</td>
<td>Ti</td>
<td>ICP-MS</td>
<td>0,01</td>
<td>mg/kg</td>
<td>0,05</td>
</tr>
<tr>
<td>Cr</td>
<td>ICP-AES (ax)</td>
<td>2</td>
<td>mg/kg</td>
<td>10</td>
<td>µg/l</td>
<td>Pb</td>
<td>ICP-MS</td>
<td>0,1</td>
<td>mg/kg</td>
<td>0,5</td>
</tr>
<tr>
<td>Cu</td>
<td>ICP-AES (ax)</td>
<td>1</td>
<td>mg/kg</td>
<td>5,0</td>
<td>µg/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>