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Knowledge-based Consistency Index for Fuzzy

Pairwise Comparison Matrices
Sylvain Kubler, William Derigent, Alexandre Voisin, Jérémy Robert, Yves Le Traon

Abstract—Fuzzy AHP is today one of the most used Mul-
tiple Criteria Decision-Making (MCDM) techniques. The main
argument to introduce fuzzy set theory within AHP lies in its
ability to handle uncertainty and vagueness arising from decision
makers (when performing pairwise comparisons between a set
of criteria/alternatives). As humans usually reason with granular
information rather than precise one, such pairwise comparisons
may contain some degree of inconsistency that needs to be
properly tackled to guarantee the relevance of the result/ranking.
Over the last decades, several consistency indexes designed for
fuzzy pairwise comparison matrices (FPCMs) were proposed,
as will be discussed in this article. However, for some decision
theory specialists, it appears that most of these indexes fail to
be properly “axiomatically” founded, thus leading to misleading
results. To overcome this, a new index, referred to as KCI
(Knowledge-based Consistency Index) is introduced in this paper,
and later compared with an existing index that is axiomatically
well founded. The comparison results show that (i) both indexes
perform similarly from a consistency measurement perspective,
but (ii) KCI contributes to significantly reduce the computation
time, which can save expert’s time in some MCDM problems.

Index Terms—Analytic hierarchy process (AHP); Fuzzy logic;
Multiple criteria decision-making; Consistency; Decision analysis

I. INTRODUCTION

MCDM (Multiple criteria decision-making) methods are

frequently used to solve real world problems with

multiple, conflicting, and incommensurate criteria and/or ob-

jectives. Hwang and Yoon [1] have classified MCDM methods

into two categories: multi-attribute decision-making (MADM)

and multi-objective decision-making (MODM). MADM tech-

niques, unlike MODM, heavily involve human participation

and judgments. Research on human judgments shows that the

human brain is able to consider only a limited amount of

information at any one time [2], thus making it unreliable to

take decisions when facing complex problems. The Analytic

Hierarchy Process (AHP), initially introduced by Saaty [3], is

by now one of the most widely applied MADM techniques,

whose main strength lies in its impartial and logical grading

system, as well as its flexibility to be combined with other

techniques such as Linear Programming, Genetic Algorithms,

Fuzzy Logic, Balanced ScoreCard, etc. [4], [5].
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As a practical popular methodology for dealing with uncer-

tainty, the Fuzzy Logic combined with AHP, more commonly

known as Fuzzy AHP (FAHP), has found huge applications in

recent years [5]. Different from classical set theory, fuzzy set

theory permits the gradual assessment of the membership of

elements in relation to a set [6]. van Laarhoven and Pedrycz

[7] introduced, in 1983, the first FAHP method making use of

triangular fuzzy numbers to model uncertainty in comparative

judgments. Many other methods were introduced in the years

that followed, as reviewed in our recent state-of-the-art survey

of FAHP applications [5]. The main argument to introduce

fuzzy set within AHP lies in its ability to handle uncertainty

and vagueness arising from human judgments. In AHP, such

judgments take place when decision makers carry out pairwise

comparisons between a set of items (criteria or alternatives).

More specifically, decision makers have to specify “how

many more times item i is preferred to item j”. As hu-

man beings usually reason with granular information rather

than precise one, such pairwise comparisons may contain

some degree of inconsistency [8]. To overcome this problem,

Saaty has introduced a consistency index that enables to

quantify the inconsistency of a single pairwise comparison

matrix. Nowadays, consistency analyses and indexes can be

decomposed into two categories: “intra” and “inter” expert

consistency [9]. While the first category focuses on a single

decision maker/matrix [10], [11], the second category focuses

on inconsistency analyses resulting from a group of decision

makers [12], [9]. The focus of our research work is on the

first category.

Back to 1985, Buckley [13] proposed a consistency index

designed for fuzzy pairwise comparison matrices (FPCMs),

which is a straight fuzzification of the Saaty’s consistency

index. In the years that followed, several-like indexes were

introduced, amongst others: (i) the feasible region consis-

tency [14] as well as the discrete region [15]; (ii) the fuzzy

preference-programming consistency [16]; (iii) the centric con-

sistency [17]; (iv) the additive consistency [18], [19]; or still

(iv) the geometric consistency whose first index was proposed

by [20], further adapted in [21], [22]. Despite the advantages

and disadvantages of all these indexes, most of the criticisms

were raised on their failure to be properly “axiomatically”

founded (i.e., based on a well-defined mathematical structure),

which may lead to misleading solutions and rankings [23],

[24]. For some decision theory specialists, including Saaty

[25], it is not even clear that fuzzy sets have ever led to

new MCDM methods. Dubois [23] argues that, in many cases,

fuzzy sets have just been added to existing techniques (FAHP,

fuzzy extensions of ELECTRE, fuzzy weighted averages, etc.)
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with no clear benefits. Dubois argues that fuzzy sets in AHP

must be considered, first and foremost, at the “axiomatic” level

and not only at the technical computing one. More specifically,

the major issue lies in the difficulty to successfully satisfy the

transitivity and reciprocal axioms [26], [27], [28], as will be

discussed in greater detail in section II. To overcome this,

Ohnishi et al. [29] proposed a consistency index – referred to

as Ohnishi’s index in the rest of this paper – that is axiomati-

cally well founded for FPCMs. In an analogous manner, a new

index referred to as “Knowledge-based Consistency Index”

(KCI) is proposed and formalized in section III, which is then

compared with Ohnishi’s index in section IV; the conclusion

follows.

The experiment results show that the proposed KCI is,

from a consistency measurement perspective, as effective

as Ohnishi’s index, nonetheless, KCI contributes to signif-

icantly reduce the computation time that is an important

outcome because it directly impacts on the decision maker’s

work/activities. Indeed, in traditional MCDM applications,

several FPCMs must be carried out by the decision maker

(depending on the criteria hierarchy structure), and the time to

solve the whole problem (i.e., for obtaining the final alternative

ranking) might increase exponentially, as will be presented in

the experiment section.

II. FUZZY AHP: PRINCIPLES, LIMITATIONS & INDEXES

We believe that a recap of the main (F)AHP principles must

first be given in section II-A, before presenting in section II-B

the Ohnishi’s index.

A. Fuzzy extension of AHP

AHP method consists of several stages [4], from the struc-

turation of the problem in a hierarchal structure (composed of

the goal, criteria, alternatives), to the pairwise comparisons of

these items, whose ideal situation is the following:

1) the pairwise relative preference of n items (alternatives

or criteria) is modelled by a n× n consistent preference

matrix A, where each coefficient aij is supposed to reflect

how many more times item i is preferred to item j;

2) a consistent preference matrix is one that fulfils the

reciprocal axiom (aji = 1
aij

∀i, j) as well as the

transitivity axiom (aij = aik × akj ∀i, j, k, i 6= k);

3) then, its largest eigenvalue is equal to n and there exists

a corresponding eigenvector −→w = (w1, w2, . . . , wn) with

∀i, j, aij =
wi

wj
, yielding relative importance weights.

Even if widely used, AHP has been criticised by some scholars

as being ill-founded at the measurement level and, as quoted

by Dubois [23]: “Asking for precise values aij is debatable,

because these coefficients are arguably imprecisely known

by experts”. Several approaches have thus considered fuzzy-

valued pairwise comparison data, which consists in extending

the computation scheme of Saaty with fuzzy intervals [5]. A

fuzzy pairwise comparison number, denoted by ãij in (1), is

supposed to reflect the expert preference (item i over j) with

a certain level of imprecision. However, this task turned out to

be difficult for several reasons [23]: (i) replacing a consistent

preference matrix by a fuzzy-valued preference matrix loses

the properties of the former; (ii) fuzzy eigenvalues or vectors

of fuzzy-valued matrices are hard to define in a rigorous way;

(iii) considering interval-matrix defined from α-cuts intervals,

denoted by ãαij =
[

aij ; aij
]

, leads to other issues (e.g., the

boundary matrices are not reciprocal anymore); and so forth.

Ã = [ãij ] =









1 2 . . . n

1 ã11 ã12 . . . ã1n
2 ã21 ã22 . . . ã2n
...

...
...

...
...

n ãn1 ãn2 . . . ãnn









(1)

Instead of viewing fuzzy interval preference matrices as

fuzzy substitutes to precise ones, one may on the contrary

acknowledge fuzzy pairwise preference data as imprecise

knowledge about regular preference information. The fuzzy

interval preference matrix is then seen as constraining an

ill-known precise consistent comparison matrix. Inconsisten-

cies in comparison data are thus explicitly explained by the

imprecise nature of human-originated information. Such a

constraint-based view has been aptly explained by Ohnishi et

al. [29] who, at the same time, introduced an original approach

that is axiomatically well founded to handle inconsistency in

FPCMs (i.e. addressing all the abovementioned difficulties).

This “constraint-based approach” is presented in more detail

in the next section.

B. Constraint-based approach (Ohnishi’s index)

The basic idea behind Ohnishi’s approach lies in the

fact that the index has to measure the degree to which an

AHP-consistent crisp matrix R can fulfill the fuzzy con-

straints expressed in the FPCM. More concretely, if −→w =
(w1, w2, . . . , wn) is the weights’ vector derived from R, the

consistency is formulated as in (2):

α (R) = min
ij

{

ãij

(

wi

wj

)}

(2)

Such an approach is not a one-stage process and requires an

optimization stage to find the optimal weights’ vector that

maximizes α(R). Ohnishi et al. have formulated this opti-

mization problem as a fuzzy constraint satisfaction problem,

as formalized in (3), where n is the total number of items (cf.

(1)) and wi the weight of item i.

maximize

(

α = min
ij

{

ãij

(

wi

wj

)})

, 0 ≤ wi ≤ 1, (3)

i = {1, .., n} ,

n
∑

i=1

wi = 1

Finally, Ohnishi’s index (denoted by αOhn) can be for-

malized as in (4), which is an axiomatically well founded

measure that reflects the closeness/distance between the “ini-

tial knowledge” expressed by the decision maker in Ã and

the “consistent knowledge” (i.e., the one satisfying the fun-

damental axioms, as it has been discussed in the previous

section). It is important to note that such an index does

not correspond, theoretically speaking, to the well known

Saaty’s consistency index. Nevertheless, it can be considered
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as a natural substitute for evaluating, and most importantly

measuring the consistency (or inconsistency) of any FPCM.

αOhn ≡ max
w1,..,wn

[

min
ij

{

ãij

(

wi

wj

)}]

(4)

III. KNOWLEDGE-BASED CONSISTENCY INDEX

The formalisation of the problem along with the proposed

index (KCI) is presented in section III-A, while the mathe-

matical proof underlying KCI is detailed in section III-B.

A. KCI Formalisation

In the following, the term “knowledge” about a variable x
is used to qualify the set of all possible values that x can take

from the expert point of view, each value being associated with

a degree of preference. By definition, fuzzy sets are perfectly

suited to represent such a knowledge about variables. When

considering a FPCM, two different types of knowledge are

expressed by the decision maker, namely:

• the direct knowledge related to the comparison of item i
over j, expressed by ãij ;

• the indirect knowledge resulting from the transitivity

axiom, expressed for each FPCM’s item by the fuzzy

number(s) ãik ⊗ ãkj .

As Dubois [23] suggests, the crisp transitivity axiom defined

as aij = aik × akj for crisp numbers, does not hold when

considering human knowledge since it is granular rather than

crisp. A strict equality (=) between fuzzy sets means that all

values of ãij would belong to ãik ⊗ ãkj . Obviously, Saaty did

not work with sets but with crisp numbers, meaning that the

transitivity axiom must not be applied directly, and the above

equality rule is too strong and extremely difficult to obtain

in practice. Instead of checking for equality between sets, a

weaker condition is to verify that pieces of “knowledge” are

consistent, meaning that they must have a common element:

ãij∩ (ãik ⊗ ãkj). When deriving this formulation to all “indi-

rect” items of a FPCM, it leads to:

(∩ (ãik ⊗ ãkj) ∩ ãij) 6= ∅

∀i,j∈N|i<j

(5)

Although this condition allows for the verification of com-

patibility between the direct and indirect knowledge expressed

by the DM (i.e., ãij), it does not provide indicators about

the degree of consistency of Ã. Indeed, this condition only

returns a binary result, i.e. whether Ã is or not consistent.

Given this observation, we present a new consistency index

called Knowledge-based Consistency Index, denoted by αKCI,

which is derived from Eq. (5) in the sense that it is based on

the inclusion operator rather than the equal or non-disjunction

operators. It can be expressed in two different ways:

∩ (ãik ⊗ ãkj) ⊇̃ãij
∀i,j∈N|i<j

∩ (ãik ⊗ ãkj) ⊆̃ãij
∀i,j∈N|i<j

(6)

The second formulation is preferred as the multiplication of

two fuzzy numbers, i.e. (ãik ⊗ ãkj), necessarily introduces an

extension of the uncertainty that does not necessary meet the

DM’s wish (i.e. ãij). Then, to quantify the level of consistency

of Ã, the inclusion operator ⊇̃ is defined as in (7).

⊇̃ : ℜ̃ × ℜ̃ −→ [0, 1]

ã⊇̃b̃ −→ sup
x∈ℜ

(

min
(

µã (x) , µb̃ (x)
))

(7)

Finally, αKCI can be expressed as the minimum degree to

which the DM’s knowledge capitalized via the entire FPCM

can be satisfied, referring to what extent the transitivity axiom

is satisfied (cf. Eq. (6)). All this can be formalized as follows:

αKCI = min
i,j∈N|i<j

((

∩
k∈N−{i,j}

(ãik ⊗ ãkj)

)

⊇̃ãij

)

(8)

If 0 < αKCI < 1, then Ã is ‘partly’ consistent to the

level α – although a perfectly crisp consistent matrix in the

sense of Saaty can be derived from Ã – since a compatibility

exists between the knowledge expressed by the DM and the

transitivity axiom for the
n(n−1)

2 pairwise comparisons, no

matter how small the compatibility is. When αKCI = 1, the

matrix is considered as ‘perfectly’ consistent, meaning that di-

rect knowledge is completely included in indirect knowledge.

However, if αKCI = 0, Ã can be reported as ‘fully’ inconsistent

because, for one of the
n(n−1)

2 pairwise comparisons, the

DM knowledge is not compatible/included with the knowledge

resulting from the transitivity axiom operation.

Deriving a crisp consistent matrix from a fuzzy one is

often a subject of debate because no explicit mathematical

demonstration is provided to express the link between fuzzy

and crisp consistency indices. To avoid this debate, the fol-

lowing section demonstrates, based on mathematical proof, the

relation between αKCI and the consistency of a crisp matrix.

B. Proof of relation between αKCI and crisp matrix consistency

Let Ã be a fuzzy triangular matrix, and Aα = [ãαij ] the

α-cut matrix of Ã referred to as alpha-matrix, i.e. a matrix

composed of the α-cuts of the each item of Ã.

Definition 1 (alpha-matrix consistency). Aα is consistent if

and only if (9) is satisfied. All wi respecting this inequation

is called the “feasible region” [14].

∃ wi, wj ∈ R
+, aαij ≤

wi

wj

≤ aαij , ∀ãi,j (9)

In fact, this definition of consistency for interval matri-

ces is similar to the one introduced in [30], as recalled

in Theorem 1. Indeed, this definition means that a vector
−→w = (w1, w2, . . . , wn) can be derived from Aα, which can be

seen as an eigenvector of a perfectly-consistent crisp matrix

whose values aij are always between aαij and aαij :

Theorem 1 (alpha-matrix consistency check). Aα is a con-

sistent matrix if, and only if:

max
k

(

aαij ; a
α
ik × aαkj

)

≤ min
k

(

aαij ; a
α
ik × aαkj

)

, ∀i, j, k (10)
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Proof. Following Definition 1, if Aα is a consistent matrix

then the feasible region is not empty, which means that there

is no contradiction among the following inequality constraints:

aαik ≤ wi/wk ≤ aαik, i, k = 1, . . . , n (11)

aαkj ≤ wk/wj ≤ aαkj , k, j = 1, . . . , n (12)

aαij ≤ wi/wj ≤ aαij , i, j = 1, . . . , n (13)

Multiplying (11) by (12) leads to the implicit inequality:

aαik × aαkj ≤ wi/wj ≤ aαik × aαkj , i, j, k = 1, . . . , n (14)

(13) and (14) imply the following inequality :

max(aαij ; a
α
ik × aαkj) ≤ wi/wj ≤ min(aαij ; a

α
ik × aαkj) (15)

Since (15) holds for any k = {1, . . . , n}, it follows that

maxk(a
α
ij ; a

α
ik × aαkj) ≤ mink(a

α
ij ; a

α
ik × aαkj) holds for all

i, j, k = 1, . . . , n.

Theorem 2 (relation between knowledge and alpha-matrix

consistency). If Ã is a knowledge-based consistent matrix

to the α-level (measured by αKCI in this paper), Aα is a

consistent matrix.

Proof. As previously detailed in (5) and 6, Ã is a knowledge-

based consistent FPCM matrix if, and only if, the following

equation holds for all its items ãij :

c̃ij = (ãij ∩ (ãik ⊗ ãkj)) 6= ⊘, ∀ i, j, k
i<k<j

= {1, . . . , n} (16)

Applying alpha-cuts on (16) would result in the following

expressions:

c̃ij = ãij ∩ (ãik ⊗ ãkj) (17)

⇒ cαij = aαij ∩ (aαik × aαkj) (18)

⇒ [cαij ; c
α
ij ] = [aαij ; a

α
ij ] ∩ ([aαik; a

α
ik]× [αaαkj ;

α aαkj ]) (19)

⇒ [cαij ; c
α
ij ] = [aαij ; a

α
ij ] ∩ [aαik × aαkj ; a

α
ik × aαkj ] (20)

⇒ [cαij ; c
α
ij ] = [max(aαij ; a

α
ik × aαkj);min(aαij ; a

α
ik × aαkj)] (21)

where the last equation is equivalent to the alpha-matrix

consistency check theorem (i.e., Theorem 1). This means that

when, for a fuzzy matrix Ã, knowledge-based consistency at

level α is reached, the alpha-matrix Aα is also consistent.

Given this, it is always possible to derive a consistent crisp

matrix from a FPCM matrix with αKCI > 0 (if αKCI = 0, it

is simply not possible to derive a crisp matrix satisfying the

transitivity axiom).

As a conclusion, our index allows for detecting an incon-

sistency (similarly to the C.I. proposed by Saaty), but also for

checking and quantifying the ”knowledge-based consistency”

by evaluating to what extent the DM’s knowledge is satisfied.

IV. KCI IMPLEMENTATION & EVALUATION

In order to make the understanding of the proposed consis-

tency index (αKCI) easier, section IV-A details in a “graphical”

manner the different computation stages, while section IV-B

focuses on the comparison study: αKCI vs. αOhn.

A. Use case definition & KCI implementation

To illustrate the αKCI computing stages, let us consider a

triangular FPCM from the literature, namely from [31] in

which an expert has carried out pairwise comparisons between

four emergency response capacities, which are respectively

denoted by C1, C2, C3 and C4 in Ã in Eq. (22).

Ã =









C1 C2 C3 C4

C1 [1, 1, 1] [ 32 , 2,
5
2 ] [ 23 , 1, 2] [1, 3

2 , 2]
C2 ã−1

21 [1, 1, 1] [ 23 , 1, 2] [ 12 ,
2
3 , 1]

C3 ã−1
31 ã−1

32 [1, 1, 1] [ 12 ,
2
3 , 1]

C4 ã−1
41 ã−1

42 ã−1
43 [1, 1, 1]









(22)

Ã is graphically displayed in Fig. 1, where the blue/solid

membership functions correspond to the ãij items, and the

red/dashed ones to the membership functions resulting from

the transitivity axiom operation (ãij ⊗ ãjk). Note that more

than one fuzzy number result from this operation since

dim(Ã) > 3. Considering ã12 and α = 0, the following result

is obtained when applying Theorem 1 (i.e., (10)):

max

(

aα12;

(

aα13 × aα32
aα14 × aα42

))

≤ min

(

aα12;

(

aα13 × aα32
aα14 × aα4 2

))

(23)

max

(

3

2
;

(

2/3× 1/2

1× 1

))

≤ min

(

5

2
;

(

2× 3/2

2× 2

))

3

2
≤

5

2

The in-equation is satisfied, meaning that c012 is consistent;

more specifically, 3
2 and 5

2 respectively correspond to the

lower and upper interval values of the “support” of c̃12, which

corresponds to the yellow/meshed shape C1,2 in Fig. 1. If we

now look at the support interval of all the other yellow/meshed

shapes in Fig. 1 (i.e., ∀i, j), it can be observed that Theorem 1

is satisfied for the whole matrix since all in-equations are

satisfied.

Given this conclusion, the KCI score can be computed

based on Theorem 2. To this end, all items c̃ij are first

computed, which correspond to the different yellow/meshed

shapes that have resulted from both the intersection of ãij
and ãik ⊗ ãkj and its inclusion within ãij (cf. (8)). As a

second and final step, αKCI is computed, which is expressed

as the minimal vertex/top value of the different yellow/meshed

shapes (a vertex/top value being graphically symbolized with

✶ in Fig. 1). Applying (8) along with the ✶ values, the

following αKCI is obtained:

αKCI = min (sup (c̃12) , sup (c̃13) , . . . , sup (c̃34)) (24)

= min (0.55, 0.47, 0.49, 0.53, 0.88, 0.42)

= 0.42

As a conclusion, Ã is KCI-consistent of value 0.42, bearing

in mind that: “the higher the αKCI score (∈ [0; 1]), the more

axiomatically consistent the initial knowledge entered by the

expert, and the more satisfied this expert will be.” If αKCI > 0,

the expert’s knowledge is consistent in the sense of Saaty since

there exists a crisp consistent pairwise comparison matrix.
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[ãij], [cij] =

C1 C2 C3 C4

C1

C2

C3

C4

1̃

–

–

–

1̃

–

–

1̃

– 1̃

0

1

0 2 4

0

1

0 2 4

0

1

0 2 4

0

1

0 2 4

0

0 2 4

0

1

0 2 4

ã14 ⊗ ã42

ã13 ⊗ ã32
➘

ã12➘

✶0.55

3
2

5
2

ã13
ã14 ⊗ ã43➘

ã12 ⊗ ã23➘

✶0.47

ã13

ã13 ⊗ ã34
➘

ã12 ⊗ ã24➘✶0.49

ã13ã21 ⊗ ã13 ➘

ã24 ⊗ ã43 ➘

✶0.53

ã24

➘

ã21 ⊗ ã14

➘

ã23 ⊗ ã34

➘

✶0.88

ã13 ➘
ã32 ⊗ ã24

➘

ã31 ⊗ ã14

✶0.42

Fig. 1. 4× 4 FPCM (Fuzzy Pairwise Comparison Matrix) specified by an expert – in [31] – for emergency response capacity assessment.

TABLE I
EXPERIMENT DATA & OUTCOMES: OHNISHI’S INDEX vs. KCI

Size Set of FPCMs/References selected from the online FAHP testbed1 Score similarity Consistent FPCMs Time difference (in s)

3 × 3 {Demirel2012b, Yucenur2011b, Isaai2011a, BuyukozkanCII2007b, Toklu2016,

Sabaghi2016c, Yu2015a, Bereketli2013a, cSen2010b, Duran2008}
100% (∆ = 0.10%) 100% [0.97; 7.66]

4 × 4 {Beskese2015, Lin2010, ChouAiC2013, Ju2012a, Nezarat2015a, Yuksel2010a,

Singh2015, LeeESwA2008, Chan2013a, Lee2009a}
100% (∆ = 0.01%) 50% [2.44; 10.5]

5 × 5 {Yu2015b, Efe2016, cSen2010a, Chan2008, Yang2010, LeeESA2009, Le2016c,

Kannan2013, Das2015, cSen2010a}
100% (∆ = 0.05%) 30% [3.65; 25.33]

7 × 7 {Calabrese2013, Prakash2016, Kabak2014, Ren2014, Jakiel2015, Zolfani2012,

Rostamzadeh2011a, Cebeci2009b, Rostamzadeh2011, HosseiniFirouz2015}
100% (∆ = 0.09%) 20% [10.14; 72.37]

≥ 10 × 10 {Bozbura2007, Nguyen2014, Ren2014b, Ren2014c, Taha2011a, Akkaya2015,

Govindan2015, Routroy2013}
100% (∆ = 0.10%) 20% [36.68; 299.0]

B. Comparison study: KCI vs. Ohnishi’s index

The two indexes (i.e., αKCI and αOhn) have been imple-

mented for comparison purposes under the MATLAB envi-

ronment (version R2014b) and tested on an Intel Pentium

Core i7-2677m machine with 1.80 GHz CPU and 4GB mem-

ory. Parameters considered for this comparison study are (i)

“similarity” of the scores between αKCI and αOhn; and (ii)

“computation time” required by each index. To this end,

several FPCMs from the literature have been selected from

the online FAHP testbed2 released in our recent state-of the-

art survey [5]. In an effort to carry out an “heterogeneous”

comparison study (i.e., considering FPCMs whose size varies),

about ten matrices per size category (from 3×3 to ≥ 10×10)

have been selected, as summarized in TABLE I. First results

and findings have been also reported in this table, as it is

discussed in the following.

An important outcome regarding the first comparison cri-

terion – i.e., how “similar” the index scores are? – is that

2Official testbed URL: http://fahptestbed.sntiotlab.lu

both scores are identical in 100% of the cases (maximum

deviation of 0.1%). To put it another way, αKCI is, from

a consistency measurement viewpoint, as efficient as αOhn

index and vice-versa. The proportion of consistent FPCMs

amongst the ten matrices considered in each size category is

also reported in TABLE I (cf. 4th column). Results show that

100% of the 3 × 3 matrices are consistent according to the

two index definitions (i.e., αOhn = αKCI > 0), while this trend

is decreasing along with the increase of the matrix size (only

20% of 7 × 7 and ≥ 10× 10 FPCMs being consistent). This

result somehow confirms that the higher the number of criteria

to be compared in a pairwise manner, the more difficult it

becomes for the human brain. Having said that, it would be

interesting to have a more in-depth look at the consistency

score obtained for the consistent FPCMs, e.g. regarding the

30% of 5×5 consistent FPCMs (i.e., 3 out of the 10 evaluated).

Fig. 2(a) provides such an overview, where the min and max

consistency scores of those FPCMs are displayed. No specific

pattern behaviour can be identified through this histogram,

except that the average consistency score is around 0.4 for
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Fig. 2. Comparison study “KCI vs. Ohnishi’s index” from an efficiency and time computation standpoint

all matrix sizes (cf. ❇ in Fig. 2(a)) and that the standard

deviation of the consistency scores decreases over the increase

of the matrix size. Nonetheless, this finding needs to be put

into perspective because only a small proportion of consistent

matrices in the upper size range were considered, e.g. only two

FPCMs out of the ten 7× 7 matrices proved to be consistent

(i.e., αOhn = αKCI > 0). In an extended version of this paper,

the whole set of FPCMs that is today’s available on the online

FAHP testbed will be considered (255 matrices in total) so as

to confirm or reject these initial findings.

The second aspect of our comparison study is looking

at the computation time required by both indexes. Such an

analysis is provided in Fig. 2(b), in which two complementary

graphs/information are displayed:

• Improvement ratio, [TαOhn
/TαKCI

]: the higher the ratio, the

more efficient our approach is over Ohnishi;

• Average time difference, avg ([TαOhn
− TαKCI

]): average of

the differences between the computation times required

by αOhn and αKCI for the set of FPCMs per category.

It means that the higher the average time difference,

the more meaningful/significant the improvement ratio

is. For example, an improvement ratio of 20 is much

less significant if we are dealing with milliseconds (e.g.,

if TαOhn
= 1ms, then TαKCI

= 1ms
20 = 0.05ms) than with

minutes (e.g., if TαOhn
= 5min, then TαKCI

= 5min
20 = 15s).

Looking first at the improvement ratio boxplots in Fig. 2(b),

it is clear that αKCI always performs faster than αOhn since, in

50% of the cases (values between the 1st and 3rd quartiles)

our approach performs ×25 to ×80 faster than Ohnishi’s

approach, and up to ×80 to ×150 in 25% of the cases

(values/cases between the 3rd quartile and the maximum

value). Looking now at the “significance” of these results,

i.e. inferring these results with the average time difference

(red curve in Fig. 2(b)), it appears that the computation time

is impacted when the FPCM size increases. For example,

the computation time difference between our approach and

Ohnishi’s one is ≈ 20s when dealing with 5 × 5 FPCMs,

lasting up to almost 2min (117s to be exact) when dealing

with ≥ 10×10 FPCMs. One of the main reasons behind such

an increase of time difference is that, unlike KCI, Ohnishi’s

index requires an optimization stage (see section II-B) where

2The reader can found/access the scientific article that is related to each
“label” given in TABLE I (e.g., Demirel2012b) via the online FAHP testbed.

TABLE II
EXPERIMENT DATA & OUTCOMES: OHNISHI’S INDEX vs. KCI

Number of FPCMs carried out in the study Additional

Reference 3 × 3 4 × 4 5 × 5 7 × 7 ≥ 10 × 10 Time

Efe2016 1 16 2 0 0 2′00”
LeeESA2009 3 1 38 0 0 8′30”
Hosseini...2015 2 0 0 6 0 2′40”
Ren2014b 0 0 0 0 7 13′30”
Akkaya2015 0 0 0 10 1 6′00”
Bozbura2007 2 0 0 0 7 13′40”
. . . . . . . . . . . . . . . . . . . . .

the solution space becomes progressively more complicated

(larger) as the FPCM size increases. This time difference gap

between both approaches might become even much higher

when considering a wider range of ≥ 10×10 FPCMs. Indeed,

our study did not consider FPCMs whose size is > 13 × 13,

while some studies consider bigger FPCMs3.

It is also important to point out the fact that, in a traditional

FAHP study, more than one single FPCM must be carried out

by decision maker(s) depending on how many criteria levels,

sub-levels, and alternatives compose the hierarchy. This has,

obviously, a non negligible impact on the overall time spent

by those decision maker(s) to fulfil the FPCMs-related task.

Just to provide a very rough estimate of how time-consuming it

could become, we randomly selected (from TABLE I) a subset

of references/papers for which we emphasize in TABLE II:

• how many FPCMs have to be carried out by the decision

maker with regard to each MCDM problem, and;

• what additional time would be necessary for the decision

maker to handle all FPCMs in cases he/she would use

Ohnishi’s index instead of KCI.

This is a “rough estimate” because we took into account

the average time difference (per size category) reported in

Fig. 2(b) for computing the estimated additional time; e.g.,

considering “Akkaya2015”, the following estimate has been

made: (10× 26s) + (1× 117s) = 377s ≈ 6′00”. When

considering the MCDM problem as a whole, this brief table

shows that it can become quite time consuming to deal with

consistency in all FPCMs (e.g., ≈ 13′00” for “Ren2014b”)

which, as stated in the introduction section, can impact on the

decision maker’s daily activities (i.e., need to wait for several

minutes to obtain the final alternative ranking).

3The reader can refer to our online FAHP testbed to identify such studies.
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V. CONCLUSION

Fuzzy Logic combined with AHP, also referred to as Fuzzy

AHP, has been introduced to handle uncertainty and vagueness

arising from human judgments, specifically when decision

makers carry out pairwise comparisons between items. Such

a combination does not come without theoretical problems,

especially regarding how to assess and handle (in)consistency

in FPCMs. It is natural for people to want to be consistent,

which is often thought of as a prerequisite to clear thinking.

Over the last two decades, several consistency indexes were

introduced to overcome this challenge. However, despite their

advantages and disadvantages, most of the criticisms were

raised on their failure to be properly “axiomatically” founded.

From the reviewed literature, the consistency index introduced

by Ohnishi et al. [29] is, to the best of our knowledge, the most

axiomatically well founded index and, as a result, is considered

in our study as a reference index.

This paper introduces a new index, referred to as KCI

(Knowledge-based Consistency Index), which is axiomatically

well founded and intended to help decision makers to mea-

sure how distant their knowledge (i.e., the one specified in

a FPCM) is from the consistent knowledge (i.e., the one

satisfying the fundamental axioms). KCI does not correspond,

theoretically speaking, to Saaty’s index but can be seen as

a natural substitute for evaluating and measuring the degree

of (in)consistency in triangular FPCMs: “the higher the KCI

score (∈ [0; 1]), the more axiomatically consistent the initial

knowledge entered by the expert”. The proposed KCI is

further compared with Ohnishi’s index, whose results show

that (i) both indexes perform similarly from a consistency

measurement perspective, but (ii) KCI contributes to signif-

icantly reduce the computation time, which can help experts

to save time considering the whole MCDM problem. In future

research work, this comparison study will be extended to

consider a much wider range of FPCMs so as to confirm these

findings, and potentially identify other improvement aspects.
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[17] E. Bulut, O. Duru, T. Keçeci, and S. Yoshida, “Use of consistency index,
expert prioritization and direct numerical inputs for generic fuzzy-ahp
modeling: A process model for shipping asset management,” Expert
Systems with Applications, vol. 39, no. 2, pp. 1911–1923, 2012.

[18] Z.-J. Wang, “Derivation of intuitionistic fuzzy weights based on intu-
itionistic fuzzy preference relations,” Applied Mathematical Modelling,
vol. 37, no. 9, pp. 6377–6388, 2013.

[19] J. Chu, X. Liu, and Z. Gong, “Two decision making models based on
newly defined additively consistent intuitionistic preference relation,” in
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2015,
pp. 1–8.

[20] G. Crawford and C. Williams, “A note on the analysis of subjective
judgment matrices,” Journal of mathematical psychology, vol. 29, no. 4,
pp. 387–405, 1985.

[21] J. Aguaron and J. M. Moreno-Jiménez, “The geometric consistency
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